Towards perpetual equipment by avoiding batteries.

Author:Harrop, Peter

Stone Age implements were passed between generations. Then the abacus and the Singer sewing machine were passed between generations so cost per operation approached zero. Today you can still see some 50 year old transistor radios in use. The almost "perpetual" product is nothing new though of course, nothing strictly lasts forever.

Now think of Internet of Things nodes deployed in hundreds of billions, many still working in one hundred years from now despite being inaccessibly embedded in concrete of bridges and buildings, on billions of trees and so on. Think of remote communities and the emerging nations having electric vehicles that are virtually maintenance free and are passed between generations to give travel almost free of charge. Return to a distant planet to find your robots still at work. It would all be in the tradition we describe but how can we do it?

Eliminating batteries is key says IDTechEx Research in the new report Battery Elimination in Electronics and Electrical Engineering 2018-2028. They have serious limitations of cost, weight, space, toxicity, flammability, explosions, energy density, power density, leakage current, reliability, maintenance and/ or life. Lithium-ion batteries will dominate the market for at least ten years and probably much longer yet no lithium-ion cell is inherently safe and no lithium-ion battery management system can ensure safety in all circumstances. Tesla says it will have solar bodywork on all its electric vehicles but, as this trend from "components-in-a-box" to structural electronics and electrics progresses, the batteries are the problem because even solid state ones swell and shrink in use. They would destroy bodywork.

The negative material recycling value of modern batteries is a threat to the environment because it may lead to uncontrolled disposal. Add to that the depletion of limited cobalt reserves and one can see that even the start of a journey towards battery elimination can give valuable wins.

Battery Elimination in Electronics and Electrical Engineering 2018-2028 uniquely examines the many ways of eliminating batteries, confounding the sceptics with many examples currently operating, from large electric buses with supercapacitors enjoying four times the life to small electric buses with no energy storage for traction. Hundreds of thousands of buildings already have electronic climate controls and electric actuators with no energy storage, pointing the way to how the Internet of...

To continue reading